

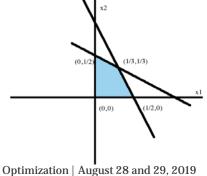
RiverWare Optimization

2019 RiverWare User Group Meeting
Tim Magee

RiverWare Optimization

- Primary motivation: Hydropower
 - Short term planning
 - Real time operations
- Can be useful for other objectives
 - Get the most you can out of the system
 - Hedge against uncertainty
 - Example: Balancing reservoirs

RiverWare Hydropower Optimization Users


Hydropower	Installed Capacity (MW)	Generation (GWh)
U.S. Total	102,867	322,390
RiverWare Opt Users	32,514	~113,530
Percent	32 %	35%

The Golden Age of Hydropower?

- 100% Renewable Portfolio Standards (RPS)
 - Coal is going away
 - Natural gas: "Bridge" to renewables
 - Solar: price is decreasing
 - Prediction: California's issues will spread
- Hydropower is quietly being reclassified as "renewable" at the state level
- Past: "fuel" limited, peaking generation
- Future: "flexibility", ramping, reserves, regulation
- Pumped Storage "battery": req. market changes

Optimization vs. RBS 1

- RBS: Timestep by timestep, object by object
 - Execute all rules at a given timestep before advancing to next timestep
 - Objects dispatch one at a time
 - "Look ahead" must be written explicitly in rule logic
- **Optimization**: Global solution in time and space
 - Solves all timesteps and all objects simultaneously
 - "Look ahead" inherent in the solution

Optimization vs. RBS 2

- RBS: Evaluate a prescribed solution
 - Set decision variables (slot values)
 based on rule logic

IF (state of system)

THEN (set decision variable)

Optimization: Find the "best" solution within

constraints

Maximize (objective)
Subject to ...

Optimization vs. RBS 3

Which is better?

Depends on use case

- RBS:
 - Long-term studies
 - Prescribed operating rules

Optimization:

- Short-term scheduling
- Determining "best" operations
- Need to consider system-wide effects
- Need to look-ahead in time

Traditional Optimization Approach

- Maximize hydropower objective, e.g. \$\$
 Subject to: Policy constraints
 Tradition
 - License elevation limits
 - Environmental flows
 - Special operations for maintenance ...
- If constraints are feasible ...
 - Works well
 - Hydropower value may be reduced by constraints
- If constraints are infeasible (conflict)? ...

Tradition is always a custom that has been passed down for years.

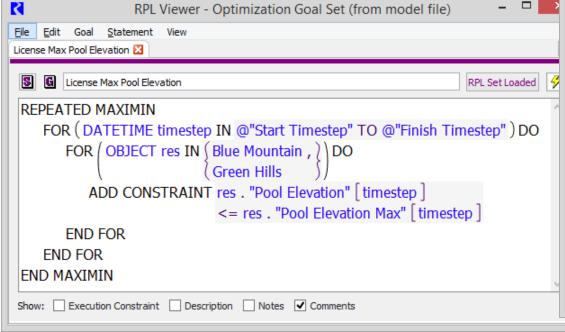
Preemptive Linear Goal Programming

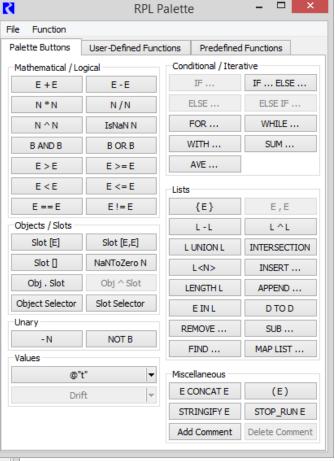
- Linear Programming
 - Solution engine
 - Constraints + 1 objective
 - Linear and piecewise approximation
 - Similar results to convex nonlinear programming
- Goal Programming
 - Soft constraints
 - Includes traditional objective functions
- Preemptive
 - Priority levels
 - No sacrifice of high priorities for low priorities

Preemptive Linear Goal Programming

- Policies (goals) are prioritized
- Solves LP at each priority
- Soft constraints converted to objective → maximize satisfaction
- Freezes objective value

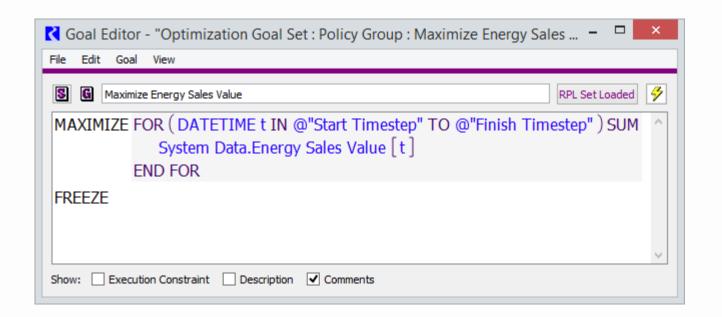
 not degraded by lower priorities
- Minimized infeasibilities


Name		Priority	
Δ	P	License Pool Elevations	
		License Max Pool Elevation	1
		License Min Pool Elevation	2
Δ	P	Minimum Flows	
		Minimum Flow Requirements	3
Δ	P	Green River Daylight Flows	
		G Green River Daylight Flow Restriction	4
Δ	P	Target Operating Elevations	
		Target Forebay Operating Range	5
Δ	P	Ending Elevation	
		Ending Elevation Target	6
Δ	P	Economic Objective Function	
		Maximize Hydropower Revenue	7


2019 RiverWare User Group Meeting

Topic | August 28 and 29, 2019

RPL Goal Editor


- RPL Same language as rules
- Same palette as rules
- Most syntax same as rules

Maximize and Minimize Objectives

User can formulate any linear objective

Typically at lowest priority

Standard Controller Sequence

Complete Opt run — three separate runs

Simulation

Optimization

Rulebased Simulation

Clear outputs
Compute
consequences of
input values

Preemptive
Iinear goal
program – solve
a series of LPs

Simulate using input values and selected opt values; post-processing

Post-optimization RBS

- Returns opt solution to the workspace
- Rules typically set Outflow

```
Res.Outflow[] = OptValue(Res.Outflow, @"t")
```

 Solve RBS using simulation methods removes approximations

Extension of Optimization + RBS

Seed RBS

- Preliminary solution
- Estimates for approximations

Automate iterative sequence with scripts

Init Rules: Preprocess using Seed results

Optimization

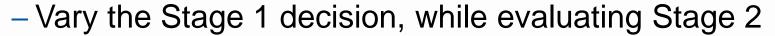
Updated Estimates

Customized

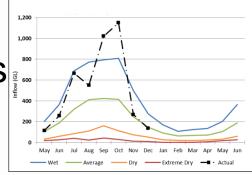
Post-Opt RBS

Revise/refine opt solution

Simulation


Init Rules: Preprocess with updated estimates Optimization

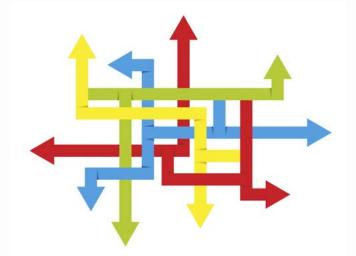
Post-Opt RBS


Revise/refine opt solution

RBS-based Optimization

- Borg (MOEA) Evaluations with RBS
- Stochastic Programming with Recourse
 - Normally, opt. with 1 objective
 - Using RBS with Multiple Objectives
 - Optimizing risk informed Stage 1 plan
 - Evaluate Stage 2 scenarios with RBS

- Examine the outcomes for Stage 1 & Stage 2
- Converge on an optimal Stage 1 decision



16

2019 RiverWare User Group Meeting Optimization | August 28 and 29, 2019

New Directions

- TVA IT Project:
 - Long Term Model
 - Improve Short Term Optimization
 - Block Cost Alternative: Perfect Dispatch
- Joint optimization of power resources
 - Asynchronous optimization
 - Time has arrived?
- Flexibility in hydropower
 - What is it? Measure it? Use it? Improve it? Cost?

17